The European Wireworm Research Network

European Wireworm Research Network

1st Workshop

July 7th 2024 Oslo, Norway

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

NORSK INSTITUTT FOR BIOØKONOMI Wireworms at the northern margin of potato production in Europe – updates from Norway Annette Folkedal Schjøll • EWRN wireworm workshop • Oslo, 7. July 2024

Wireworms on the rise in Norway...

- Just a few species considered agricultural pests
- Observed increasing damage to potato due to wireworms
- Wireworm project , 2019-2022 «Improved Monitoring and Control of wireworms in Norwegian potato production»
 - Species involved and damage caused by wireworms
 - Knowledge on potato cultivars less prone to damage
 - Crop rotation and decision support system
 - Alternative biocontrol method for direct control in field (ATTRACAP^{IM})

Adult click beetles, Agriotes obscurus

Wireworm belonging to Agriotes

Forskningsmidlene for jordbruk og matindustri

Improved Monitoring and Control of wireworms in Norwegian potato production

Project period: 1.3.2019 – 31.12.2022

Funding: «Forskningsmidlene for jordbruk og matindustri (FFL/JA)» the Ministry of Agriculture and Food in Norway, the Potato Industry by BAMA, Gartnerhallen SA og potato producers (tot. 7.0 mill NOK, 20% from the potato industry)

Partners: NIBIO, NMBU, BAMA, Gartnerhallen, NLR, potato producers (A. Holen, E.L-R. Lunden, J.E. Ruud)

International project participants: Dr. Robert Vernon, AAFC (Canada); Prof. Dr. Stefan Vidal, Georg-August-University (Germany); Michael Kastenbutt, Biocare GmBH (Germany); Dr. Jörn Lehmhus, Julius Kühn-Institut (JKI), (Germany)

Canadian wireworm risk rating system

Risk of wireworm damage to a field is dependent on the fields cropping history and wireworm damage in the area

- Years in preferred crops in the past 4 years (max 10 points)
- Nearest wireworm damage in the past 4 years (max 5 points)

Survey of species 2019-2022

- Random potato fields
- Field experiments
- Bait traps
- Collected by hand
- VPT traps (acquired from AAFC, Canada)

Adult click beetles collected in VPT traps 2019-2020

Species, latin name	Adults in VPT in field margin	Larvae in bait traps in potato field	
Agriotes obscurus	Dominating species	Dominating species	
Agriotes lineatus	Yes	No	
Agrypnus murinus	Yes	No	
Athous haemorrhoidalis	No	Yes	
Cidnopus aeruginosus	Yes	Yes	
Dalopius marginatus	Yes	Yes	Se
Ectinus aterrimus	Yes	No	ae
Hemicrepidius niger	Yes	Dominating species	1
Hypnoidus riparius	Dominating species	Yes (dominating in some fields)	
Selatosomus aeneus	Yes	Yes	cru
Selatosomus cruciatus	Yes	No	

Agriotes obscurus Hypnoidu

Hypnoidus riparius

Selatosomus aeneus

Selatosomus truciatus

Agriotes lineatus

Agrypnus murinus

NIBIO

A. obscurus, H. niger

We still need more wireworm knowledge!

- Life cycles and seasonal population dynamics for the different pest species in Norway
- Define main factors influencing control efficiency under Norwegian conditions?
- Best crop rotation for infested areas
- Testing the new developments from Biocare in Norway?
 - "Fast acting" formulation
- Other crops is it the same species involved?
- New joint project?

Annette Folkedal Schjøll annette.folkedal.schjoll@nibio.no

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

<u>Belgium by</u> <u>Willem D</u> (ILVO)

Updates from

Belgium

Presenter: Willem Desmedt (ILVO)

1st European Wireworm Workshop | 07/07/2024

RESEARCH & ADVICE IN AGRICULTURE & HORTICULTURE

The wireworm problem in Belgium

- Big three: Agriotes lineatus (> 50%), A. sputator & A. obscurus (20-25%)
- Also recorded:
 - Agriotes gallicus, A. acuminatus, A. pallidulus, A. sordidus (rare)
 - Hemicrepidius niger
 - Adrastus sp.

The wireworm problem in Belgium

- Damage mainly reported in (sweet) potato, maize and chicory
 - Potato: ± 50% (!) of Flemish arable output by value; annual turnover of processors €1.8 billion.
 - Maize: largest arable crop, predominantly for animal feed
 - Chicory: widely grown in Belgium as a vegetable ('witloof') and an industrial crop (inulin)

The wireworm problem in Belgium

- Research institutes:
 - ILVO: molecular ID, risk modelling, pest biology etc.
 - Gembloux Agro-Biotech/CRA-W: monitoring, behavior/host finding, variety resistance etc.
- Applied Research and Extension organizations:
 - Inagro: all arable crops
 - Viaverda: (sweet) potatoes
 - Praktijkpunt Vlaams-Brabant: chicory
 - Hooibeekhoeve: cereal and fodder crops (including maize)

Management options

- 1. Risk assessment (e.g. using the AgrioRisk app) + monitoring
- 2. Preventative measures
 - Avoid susceptible crops
 - Early-maturing varieties if potatoes must be planted
 - Plowing in May-June for mechanical control

3. Curative measures

- Pyrethroids: tefluthrin (Force), cypermethrin (Sherpa), lamba-cyhalothrin (Karate)
- Fosthiazate (Nemathorin; only in potato)
- No licensed options for organic agriculture

AgrioRisk

• RF model trained on four years (2015-2018) of bait trap monitoring in 235 Flemish potato, chicory and maize fields; +/- 70% accuracy

AgrioRisk

Non Store			🖉 🛱 Grondbewerkingen 🕖 🖉			
90,370re 90,71dre			Actio	Tijds	tip	Acties
			Ploegen	16/07/	2018	-
2 Dant			Ploegen	14/05/	2018	
ta 32m ²	Pro the second		-	+ Grondbewe	fking toevoegen	
10.02er# 1,47ha	Carl and		🕴 Teelt info 🔞			A ~
37.244*	Gonnarde		Teelt	Zosi plantdatum	Verw. oogstdatum	Acties
23,70ars	in States	1 3	gras 16	6/07/2018 - 16/07/2018		1
antes (gras	16/07/2017		
	- inper	Berry	gras	16/07/2016		-
	1000 100 2	20,emre	gras	16/07/2015		1
30,0% or 31, % or e			gras	16/07/2014		
		0	gras 16	/07/2013 16/07/2013		
TOUTER		19		+ test b	oevoegen	
30, 43ane 38, 14ane 46, 84ane	Prognose Bilnadden (1 van 3)		A Bodem elger	nschappen 🚳		A .
	Tijdstip : 20-08-2018		Textuur (klei - 04	5/2018)		+
	Resultant : Laag risico		pH (6.4 - 06/201	8)		+
54me (1,00%) 1,20%	Zoomen risar	1 100	Organische koolste	of (4.5 - 06/2018)		÷
	And the West			+ Eigensch	ap toevoegen	3
A CANAN AND A			Voorspelling	smodel ritnaalden		^
			L	Oce een	voorspelling	
			- 1	idstip	Voorspelling	
			20/0	08/2018 Laag	rísico	
Stelsel WOS84		AND A REAL PROPERTY OF	1670	07/2018 Laag	risico	
Lon 3' 7' 40' lat 50' 54' 9'		A CONTRACTOR OF	16/0	07/2018 Geen	resultaat	
				© S	luit menu	

Wireworm research projects

- IWT Ritnaalden (2015-2019): wireworm monitoring and management in chicory, potato and maize fields
 - Development of the AgrioRisk application
 - Establishment of damage thresholds for target crops
 - Evaluation of pheromone traps and bait traps
 - Evaluation of biofumigation and attract-and-kill biocontrol products
- Mesurol-free maize (2020-2022): monitoring and management of wireworms in maize

Wireworm research projects

- ElatPro (2016-2019):
 - Development of LAMP method for molecular ID of Agriotes obscurus/lineatus and sputator
 - Monitoring
 - Evaluation of mechanical control strategies
- Ctrl-Elat (2026-2030?): wireworm management in potato
 - Evaluation of cultural, chemical and biological treatments + metabarcoding to assess impact on soil arthropod communities
 - Improved risk model and application: more data, better integration with databases (input automation), possibly extension to sub-field resolution?
 - Cost-benefit assessment of management options, decision support tools

Thanks!

ILVO - Willem Desmedt willem.desmedt@ilvo.vlaanderen.be

Contact:

Inagro - Kürt Demeulemeester kurt.demeulemeester@inagro.be

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Status of Wireworms and their control in Canada

Christine Noronha

Charlottetown Research and Development Centre

1st European Wireworm workshop July 7th, 2024 – Oslo Norway

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Chemical control measures available

Older chemistries

- Organophosphate (Phorate) needs a smart box application system on sprayer
- Neonicatonoid only paralyses wireworms
- Pyrethroid (Tefluthrin) give very low levels damage suppression in potatoes, mainly used in maize crop

New chemistry registered in 2022

• Meta-diamides (Broflanilide)

Prince Edward Island Canada

- Population = 176,113
- Area = 5,686.03 km²
- Farmed area = 45%
- Main crop = Potatoes
- Over 7 million in losses due to wireworms alone
- *A. sputator* identified as the main species. Rapid spread to new locations observed since 2004

Damage to tubers following a two year crop rotation with brown mustard, buckwheat or barley

Сгор	Percent Marketable tubers	Percent tubers not damaged	Percent tubers lost	
Brown Mustard	98%	34%	2%	
Buckwheat	93%	30%	7%	
Barley	64%	6%	36%	

Strategy tested on the following species - Agriotes sputator, A lineatus, A obscurus, Hypnoidus abbreviates and Limonius agonus

Click beetle survey sites 2009 (60), 2012, 2016,2019,(85), 2022 (84)

Monitoring the click beetle population in PEI

Combined total number of A.sputator, A. obscurus, and A.lineatus

Monitoring the species spread in PEI

Total number of all species					
of click beetles trapped					
2012 - 12,604					
2016 - 47,126					
2019 - 24,216					
2022 - 14,604					

 Percent Agriotes sputator

 2012 - 91%

 2016 - 94%

 2019 - 96%

 2022 - 98%

Total number of fields with click beetles				
2012 - 85 fields	all infested			
2016 - 85 fields	all infested			
2019 - 85 fields	all infested			

T202222 fields in three fields in 2022.

Thanks to the Entomology Research Team and funding partners

Dr. MD Bahar

Students Katie-lynn, Matt, Courtney, Danielle, Marion, Holly, Meagan

Natasha Mosher-Gallant

Nancy Gormley

Dan Ulrick and Dave Carragher

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

The voice of Canadian fruit and vegetable growers

Agriculture and Fisheries

CANADIAN AGRICULTURAL PARTNERSHIP Innovate. Grow. Prosper.

PARTICIPATING GROWERS

Thank you for listening

Contact information christine.noronha@agr.gc.ca Phone 902-394-1350

Agriculture and Agri-Food Canada

Crop Rotation

Table 1. Total market yield, number of undamaged tubers, holes per tuber, tonnes per hectare lost due to wireworm damage and marketable yield for the processing market in a potato crop following a 2 year rotation with brown mustard, buckwheat, barley/clover at Hazelbrook in Prince Edward Island, Canada.

Crops	Total Market yield (t/ha)	Tubers with no Damage (t/ha)	Averag e Number of Holes per tuber	Tonnes/ha lost due to damage (for Processing) (t/ha)	Tonnes/ha Marketable (for Processing) (t/ha)
Brown Mustard	45.6 a ¹	16.2 a	04 a	0.5 a	45.1 a
Buckwheat	45.9 a	12.6 a	06 a	2.6 a	43.3 a
Barley	47.3 a	2.3 b	20 b	16.8 b	30.5 b
Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Wireworm research in Canada: Pest species, past research, and future directions

Wim van Herk¹, Bob Vernon²

¹Agassiz Research and Development Centre, Agassiz, BC, Canada ²Sentinel IPM Services, Chilliwack, BC, Canada

1st European Wireworm Workshop, 7 July 2024, Oslo, Norway

Agriculture and Agri-Food Canada

- 1. Pest species in Canada
- 2. Past research
- 3. Future directions

1. Pest species in Canada

Guide to Pest Wireworms in Canadian Prairie Field Crop Production

Agriculture and Agriculture et Agri-Food Ganada Agriculture et Agriculture Canada Canadä

- Vernon and van Herk. 2022. "Wireworms..." In: Insect Pests of Potato. 103-148
- Catton et al. 2021. Guide to pest wireworms ... AAFC, Lethbridge, Alberta, Canada
- Rashed and van Herk. 2024. Pest elaterids of North America... Ann. Rev. Entomol. 69:1-20

- Saguez et al, 2017. Wireworm in Quebec field crops: specific community composition in North America. Env Entomol 46:814-825.
- van Herk et al. 2021. Distribution of... Agriotes obscurus and A. lineatus in British Columbia....J. Asia-Pacific Entomol 24:688-694
- van Herk et al. 2021. Distribution of pest wireworm species in Alberta, Saskatchewan, and Manitoba. Env Entomol 50:663-672.
- Singleton et al. 2022. First record of the invasive wireworm *Agriotes sputator* in Quebec, Pan-Pacific Entomol 98:184-187.
- Smith et al. 2024. Wireworm species associated with corn and soybean agroecosystems in Ontario. Env Entomol (in press)

The Agriotes pest complex

Pictures: Julien Saguez, Warren Wong, Jim Moore

Introduced, coastal BC, PEI, Nova Scotia, Newfoundland, **dispersing inland** Introduced, PEI, Nova Scotia, Newfoundland, **dispersing inland**

native, eastern Canada, well known pest species native, eastern Canada, unstudied, likely pest species native, Southern BC, unstudied, historical pest species

Limonius pest complex

Western North America

Eastern, central

Limonius canus LeConte

Limonius californicus Mann.

Past research

- Insecticide efficacy (larvae, beetles)
 - Tox studies, behaviour response, feeding response, bioassays
 - Field studies with potato, wheat (neonics, diamides, pyrethrins, group 30's)
 - Lab studies, delayed recovery, delayed intoxication, repellency
 - Beetle sprays in field (BC, PEI)
- Mass trapping, mating disruption, trap development (VBT, VPT, BBVPT), beetle movement across landscape, population stability, phenology, egg development, landscape characteristics, etc. for three *Agriotes* species
- Pheromone identification with Drs. Gerhard and Regine Gries, Simon Fraser University (>10 native species)

• Gries et al. 2021. J. Chem. Ecol. 47: 123-133

Monitoring with pheromones

Photo: A. Nikoukar (U Idaho)

Photo: Haley Catton (Lethbridge RDC)

The Agriotes pest complex: pheromones

Agriotes ferrugineipennis: 7-methyl-octyl-7-methyl-octanoate

Х

baited traps collected on average 1,200 × unbaited traps

speciesG-4G-6G-8A. lineatusxxxA. obscurusxxxA. sputatorxxxA. pubescensxxx

"Mancus complex": geranyl esters

A. mancus

European A. *lineatus* and North American A. *pubescens* have the same pheromone

Х

- Singleton et al. 2022. J. Chem. Ecol. 48: 491-501
- Singleton et al. 2023. Agric. Forest Entmol. 25:468-476.
- van Herk et al. submitted.

Future directions:

- Develop better monitoring, risk-prediction tools
- Determine how we can use the tactics developed for 3 invasive *Agriotes* for > 20 native pest species
 - Monitoring (field scale, landscape)
 - Mass trapping
 - Mating disruption
 - Attract and kill

Headlands (Total Catch) **1** H1 (312) 2 H2 (460) **3** H3 (4229) **4** H4 (3973) **5** H5 (444) 6 H6 (286) **7** H7 (2002) 8 H8 (2006) Perimeter (Total Catch) DP1 (2023) 2 P2 (1275) 3 P3 (3260) 4 (4879) 🔮 5 P5 (3294) 6 P6 (957) 7 P7 (1801) 8 (2073) 8 Center (Total Catch) 1 C1 (3314) 2 C2 (2391) 3 C3 (1521) 4 C4 (1700) 5 C5 (2192)

Identify hotspots, to eliminate populations that move into fields

• Mass trapping

• Mating disruption

- -Todd Kabaluk, Agassiz RDC
- -Pheromone granules

-ChemTica

-"pheromone-treated substrate effectively disoriented male AO for > 17 d."

van Herk et al. 2023. Arthropod Plant Interactions 17:485-506 (*Agriotes obscurus*, *A. lineatus*, in BC)

- Attract and kill
 - Metarhizium brunneum

"Pheromone granules applied at 12.7 kg/ha ... together [with] ... *M. brunneum* LRC112 reduced beetle recapture by 98.2 % compared to *M. brunneum* alone."

Kabaluk et al. 2015 J. Pest Science 88:707-716. (*Agriotes obscurus*, *A. lineatus*, in BC)

Todd Kabaluk

A very special thank you to...

Terisha Mitchell, many wonderful students, collaborators, growers, and funders, you, and the symposium organizers

Contact: wim.vanherk@agr.gc.ca

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Updates on wireworm problems, research areas and knowledge gaps within Estonia

Mati Koppel, Anne Must, Karin Nurme, Enno Merivee

Major crops at risk of wireworm damage

potato maize wheat carrot onion carlic

Research project: Alternative methods in control of wireworm in potatoes (2020-2023)

Initiated and in collaboration with farmers cooperative Talukartul

Financed from Rural Development Programme

- 1. Monitoring of wireworms
- 2. Field and technology trials
- 3. Video tracking in soil bioassay arena

meetodid kartulit kahjustavate traatusside tõrjel

Eesmärgid:Traatusside liigilise koosseisu ja leviku dünaamika ning efektiivsete tõrjevõtete selgitamine

Projekt teostatakse TÜ Talukartul ja Eesti Maaülikooli koostöös MAK meetme 16.2 raames 01.03.2020-28.02.2023

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

Monitoring of predominant known wireworm species

Monitoring of predominant known wireworm species

South - Estonia

North - Estonia

List of authorised products in Estonia:

- Columbo 8.8 MG (cypermethrin) special permission 2019-2021
- Soil Guard (tefluthrin) registered since 2022

Trials on mechanical soil cultivation (rotary disc harrow)

	Untreated	Attracap 20 kg/ha	Attracap 30 kg/ha
Untreated			
Rotary harrow 1x			
Rotary harrow 2x			

Video tracking in soil bioassay arena

Expectations of Estonia from a European network

Exchange of best practices for Integrated Crop Management

Participation in development of effective (biological) control

State States

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Integrated Crop Management & wireworms

Tools & tactics to manage wireworm biology and damage

Hilfred Huiting, Klaas van Rozen, Bas Allema & Arjan Mager – 7 July 2024

State of art wireworms in NL

- Current monitoring insufficiently predictive
 - Damage and presence with halved potato tubers
- Reduced tillage and increased cover cropping
- Insecticide use under pressure
 - Steady increase problems over past decade(s)(?)

Current work – public-private partnership

- Project running 2022-2025
 - Advisors, farmers, potato processors
- Work on:
 - Understanding the biology validation
 - Understanding the field situation
 - Developing new control strategies
- Embed in ICM: Integrated Crop Management

Biology/

life cycle

Field situation/ monitoring

'solid soil pest approach'

Targeted control

A framework for redesign of cropping systems

https://doi.org/10.1016/j.eja.2021.12644

A framework for redesign of cropping systems

Focus on understanding biology

https://edepot.wur.nl/639307

Biologie en gedrag van ritnaalden, emelten, wortelduizendpoten en ondergrondse springstaarten

Klaas van Rozen, Thibault Costaz, Marjolein de Graaf, Hilfred Huiting & Rob van Tol

Focus on understanding the field situation

- Dataset compiled of over 600 fields +/- wireworm damage
- Get an understanding of crucial predictive factors
- Some of the surfacing factors: Grassland in previous years – Organic matter – Soil moisture table – Soil density – Potato cultivar – Overwintering situation (cover crop)

Focus on understanding the field situation

 First steps to develop recognition algorithm

Developing new control strategies

- 1 to 1 substitution insufficient
- Embed alternatives in ICM focus on agronomy as a whole
 - Effects (cover) crop/cultivar selection
 - Side effects inundation (for nematode control)
 - Soil cultivation practices

Developing new control strategies

- Experiments running to validate brown mustard effects
- Inundation effects

Temperatuur * Inundatieduur					
Factor	LR	Df	p.value		
Temperatuur	10.79	2	0.004		
Inundatieduur	0.012	1	0.914		
Interactie	11.71	2	0.003		

Working to get there eventually!

Hilfred.huiting@wur.nl +31 6 30 36 30 65

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Wireworms, the UK position

Martyn Cox Blackthorn Arable Ltd

European Wireworm Research Network

European Wireworm Research Network 1st Workshop

Oslo, 7th July 2024

Species

- The only major study on our species was in 1938-42, England & Wales only.
- Everything done since then indicates that three *Agriotes* species are our major crop pest.
- Agriotes obscurus generally present
- A.lineatus more in the West, but are in most areas.
- A.sputator dominant in the South East, virtually absent in the North.
- Some localised populations of *Athous haemorrhoidalis*.
- Selatosomus aeneus and Ctenicera cuprea present, no problems known.
- Adrastus and Agrypnus, not considered to be crop pests.
- *Hemicrepidius hirtus / niger in peaty soils, pest status?*

European Wireworm Research Network 1st Workshop Oslo, 7th July 2024

Crop damage

- Potatoes are frequently damaged.
 - Problems less frequent in processing sector, but tolerance higher.
 - Some processing varieties are very susceptible e.g. Innovator (despite TGA)
 - No data on actual level of damage in UK potatoes.

Other crops

- Cereal crops, becoming increasingly damaged
- Vegetables: Cauliflowers, Leeks, Lettuces, Onions.
- Maize.
- Some crops are much more tolerant, spring barley, spring beans, linseed.

European Wireworm Research Network 1st Workshop Oslo, 7th July 2024

Control options

In potatoes

- Fosthiazate
- Increasing use of IPM: risk assessment, monitoring, variety, crop duration.
- Variety + crop duration, a very powerful combination.

Other crops

- Tefluthrin seed treatments in sugar beet, vegetable crops, cypermethrin in cereals.
- Entomopathogenic fungi are approved in the UK for some uses.
- Work for registration with Beauveria bassiana, Lambda cyhalothrin ,Tefluthrin granules (potatoes, maize)
- Nematodes are being considered as an option.

European Wireworm Research Network 1st Workshop Oslo, 7th July 2024

Research projects

Research in potatoes

- Cupgra work on varietal susceptibility, companion crops
- Chemical control and new options (Potato partnership)

Projects (no specific crop)

- Fera Enigma 1: (Life cycles, monitoring, climate change, survey and DNA identification of species.
- Rothamsted Research: Semiochemicals, work on improved bait traps.
- Innovative Farmers: Study on autumn management of stubbles and survival of larvae.
- EPF and VOC: (Wood et al. Swansea)

European Wireworm Research Network 1st Workshop Oslo, 7th July 2024

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

sturias

Castilla y León

Andalucía

Galici

...................

Potato growing areas

La Rioja

1adrid

Castilla-La Mancha

In northern Spain (temperate-humid-temperate *Cfb*), the two species usually recorded are: *Agriotes sordidus (predominant in potato rotation) A. lineatus*

In Southern Spain (Temperate-Dry-Subtropical *Csa*), it is possible to find: *A. obscurus A. curtus A. sputator* on sweet potato, cotton, maize and sugar beet.

The damage is significant and recurrent every year in potato and sweet potato

Baleares

Comunidad Valenciana

Región de Murcia

- The priority research topics are focused on the evaluation of efficacy of commercial phytosanitaries to reduce the annual incidence and severity of damage.
- Other parameters taken into account in R&D studies are **crop rotation** and, above all, the timing and type of **irrigation** (drip or sprinkler irrigation).
- In Spanish potato breeding programs, varietal susceptibility has not been a priority parameter of selection.
- At the moment there are no projects funded by the Spanish Ministry, although there are projects funded in Spanish regional calls, in Andalusia (IFAPA) and in the Basque Country (NEIKER-BRTA).

So far, none of the products have consistently demonstrated efficacy equal to or greater than those that have been banned in 2019 (Mocap-Etoprophos Organofosforado)

1st European Wireworm Workshop 7th July 2024

In Spain there are **9 plant protection products** (5 active materials) authorized for potato.

In addition, there are 4 other products registered for crops other than potato.

Nº Registro	Name	Company	Formula	Crop
ES-00377	MACISTE	SIPCAM	LAMBDA CHALOTRIN 0,4% [GR] P/P	Potato
20111	NATURALIS	CBC IBERIA	BEAUVERIA BASSIANA (CEPA ATOC 74040) 2.3% (2.3X10E7 ESPORAS VIABLES/ML) (ODI P/V	Potato
22004	NEMATHORIN 10 G	ISK	FOSTIAZATO 10% [GR] P/P	Potato
ES-00067	POINTER GEO	SIPCAM INAGRA	LAMBDA CHALOTRIN 0.4% [GR] P/P	Potato
ES-01191	SOILGUARD 0.5 GR	SHARDA (España)	TEFLUTRIN 0.5% [GR] P/P	Potato
ES-00521	SPINTOR GR	SBM DEVELOPPEM ENT	SPINOSAD 0.4% [GR] P/P	Potato
ES-00068	TRIKA LAMBDA 1	SIPCAM INAGRA	LAMBDA CHALOTRIN 0,4% [GR] P/P	Potato
ES-01428	TRIKA LAMBDA 2	SIPCAM INAGRA	LAMBDA CHALOTRIN 0.24% [GR] P/P	Potato
ES-01429	TRIKA LAMBDA 4	SIPCAM INAGRA	LAMBDA CHALOTRIN 0.15% [GR] P/P	Potato
ES-01280	FUERZA	SHARDA (España)	TEFLUTRIN 0.5% [GR] P/P	Crops, NOT for potato
17502	LEBRON	ADAMA ESPAÑA	TEFLUTRIN 0.5% [GR] P/P	Crops, NOT for potato
25760	METEOR	DIACHEM	DELTAMETRIN 1.57% ISCI P/V	Crops, NOT for potato
ES-01151	SOILGUARD 1.5 GR	SHARDA (España)	TEFLUTRIN 1.5% [GR] P/P	Crops, NOT for potato

The loss recorded in the last five years due to wireworm in ware potato in Spain

Source: UDAPA S Coop. (One of the biggest ware potato trader in Spain, mainly Spanish and Southern French production

% Damaged Potato batches* in Spain (Peninsular) and France (Southern)

2018	5%		
2019	7%		
2020	7%		
2021	12%		
2022	13%		
2023	16%		

- Dry autumns

Damaged potato batches threshold: an incidence > 7-8% tubers with more than 4 holes/tuber before washing and mechanical rejection of damaged tubers

The damaged batches* are not commercialized as ware potato, they are intended for industrial potatoes (processed)

NEIKER

Nekazaritza Ikerketa eta Garapenerako Euskal Erakundea Instituto Vasco de Investigación y Desarrollo Agrario

Arkautiko egoitza | Sede Arkaute: T. +34 945 121 313 Derioko egoitza | Sede Derio: T. +34 944 034 300 in y f D info@neiker.eus www.neiker.eus

EKONOMIAREN GARAPEN ETA AZPIEGITURA SAILA

DEPARTAMENTO DE DESARROLLO ECONÓMICO E INFRAESTRUCTURAS

PRIBATUTASUN POLITIKA | POLÍTICA DE PRIVACIDAD | LEGAL NOTICE

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Liberté Égalité Fraternité

Wireworm issues, research areas and knowledge gaps in France todate

<u>Le Cointe Ronan¹</u>, Larroudé Philippe², Thibord Jean-Baptiste², Cigna Jeremy², Ngala Bruno³, Le Hingrat Yves³, Plantegenest Manu¹ and Poggi Sylvain¹

¹INRAE – IGEPP – Team Ecology and Genetics of Insects ² Arvalis Institut du Végétal ³ Inov3PT

 $>\!\!\!\!>$

ronan.le-cointe@inrae.fr

Context in France : an increase in damage in recent years

 \rightarrow No more chemical pesticides reducing larval density

• Gradual withdrawal of pesticides since 20 years

• Permanent ban of ethoprophos in 2019

• Few authorised molecules left (lamba-cyhalothrine), Spinosad, Beauveria bassiana)

• Major crops at risk of wireworm damage: potatoes, maize, carrots, lettuce, bulbs

igepp INRAC

G.Rovarc'h (Terre d'Essais)

 $\langle \mathfrak{D} \rangle$

inov3PT

FOR THE FUTUR

Le Cointe *et al.*, 2023. Innovations Agronomiques, 83, 78-90. Many crops are regularly damaged by wireworms leading to both yield losses and a deterioration in product quality. Context in France : species distribution

- \rightarrow 2021 : survey including 232 plots previously cultivated with potatoes
 - Predominant species (other than Agriotes) :
 - Athous bicolor (41 %)
 - Adrastus rachifer (35 %)
 - Athous campyloides (18 %)
 - Hemicrepidus (6 %)

Context in France : species distribution

 \rightarrow 2021 : survey including 232 plots previously cultivated with potatoes

Athous subfuscus (3)

Adrastus pallens (17,

Adrastus montanus (4)

Hemicrepidius niger (108) Agrypnus murinus (14)

Agriotes obscurus (345)

Agriotes ustulatus (9)

Agriotes sordidus (4)

Agriotes lineatus (95)

Agriotes sputator (17)

Plant roots (382)

0

Athous bicolor (5

- Predominant species (other than Agriotes) :
 - Athous bicolor (41 %)
 - Adrastus rachifer (35 %)
 - Athous campyloides (18 %)
 - Hemicrepidus (6 %)

?? Role of non Agriotes

- Context in France : species distribution
- \rightarrow 2005 2014 : survey including 1200 maize fields
 - Predominant Agriotes species :
 - Agriotes lineatus (42,5 %)
 - Agriotes sordidus (29,5 %)
 - Agriotes sputator (20,4 %)
 - Agriotes obscurus (6,7 %)

Larroudé et al., 2015. Perspectives Agricoles, 427.

- **>** Research priorities in France (1/3)
- \rightarrow Developing tools for risk assessment
 - First step : predicting wireworm abondance in plots

?? Best way to assess larval density

Soil sampling Baiting Molecular tools ...

Roche J. et al., 2023. Smart Agricultural Technology,4.

> Research priorities in France (1/3)

- \rightarrow Developing tools for risk assessment
 - Second step : understanding of the crop-specific processes that lead to damage

Dichotomy between crops for which the damage occurs at the beginning of the crop and those for which the damage occurs at the end of the crop

> Larval density

> Wheather conditions at sowing

Poggi S. et al., 2018. Journal of Pest Science.

> In progress

> Length of period between haulm kill and harvest ?

> Research priorities in France (2/3)

- \rightarrow Reducing wireworm abundance
 - Effect of crop rotation
 - Effect of tilling

Le Cointe R. et al., 2023. Arthropod-Plant Interactions.

• Fungi

• Nematodes

?? Practices increasing EPFs or EPNs **??**

igepp INRAO **Research priorities in France (3/3)** inov3PT SEED POTATO FOR THE FUTURE \rightarrow Crop Damage Management **Companion Plants:** Thibord JB. et al., 2017. Innovations Agronomiques, 55, 215-233. > Feeding Pests as an IPM Strategy Companion Bare Belem 25 Soil Plant Chemical with Control Wheat Le Cointe R. et al., 2023. Arthropod-Plant Interactions. control Percentage of maize seedling symptom type (%) 20 Tot Jed 0.50 15 damage Damage 10 0.25 0.00 T1_Bare_soil T2_RCW_Mulch T3_Wheat_Mulch Treatment T4 Wheat cover crop

 $\langle \rangle$

?? How to implement this strategy to other crops than maize **??**

Liberté Égalité Fraternité

Thank you for your attention

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Wireworm in Sweden Oslo 7 juli 2024

" My fortunes and my pleasure has been to discover the wireworms, to their nature, way of life and characteristics: the future is to invent happier means to exterminate and reduce them""

(Carl Bierkander 1779)

Agriotes lineatus and A. obscurus are the main pests. Problems are increasing. Less cultivation and stricter quality requirements are some reasons. No pesticides are allowed. Still need for solutions.

(Åsa Rölin 2024)

Crop rotation and tillage impact on occurrence of wireworm, 2006 -2009.

Different crop rotation and tillage were investigated.

Result:

A rotation with cereals and grass as intermediate crop significantly increased damaged caused by wireworms.

The result shows that there is a tendency for cultivation and crop rotation to reduce the number of larvae where fallow has been for a long time. The author cannot say whether crop rotation or tillage is better for reducing the number of larvae.

A Krijger., 2011. Stiftelsen lantbruksforskning H0842022, Final report 10 pages

Field trial with seeds with or without Rhizoctonia

Trials made by Åsa Rölin financed by Jordbruksverket

Catching Clickbeetles, 51 fields 2008-2013

Сгор	average number of beetles	variation	Amount of fields
Faba bean	14	10-19	2
Oilreddish	28	5-49	4
Triticale	35	14-67	4
Potatoes	60	15-150	2
Oat	95	17-237	7
Winter wheat	195	56-420	3
Barley	227	17-535	16
Wild grass nature	566	380-822	6
Ley	663	131-1828	7

Investigation made by Åsa Rölin och Pia Björsell in Värmland

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

SIMAGRIO-W

Decision support system to predict wireworm activity

Manuela Schieler, Lena Müller, Kathleen Kohrs, Jeanette Jung, Juliane Schmitt, Benno Kleinhenz, Paolo Racca

Central Institute for Decision Support Systems in Crop Protection, Germany

1st European Wireworm Workshop

07.07.2024, Oslo

Who are we? - Structure and Network of

7EDD

ZEPP

- Agreement of federal states in Germany
- Development, validation and maintenance of weather-based models and decision support systems (DSS) for important pests and diseases in Agriculture and Horticulture

Network of ZEPP

Informationsystem for Integrated Crop Production

- Registered association
- Realization and maintenance of hompage for consulting service

www.isip.de

Updates from Germany

- Sampling sites with high and low infestation rates
- Sugar beets: Secundary pests like rooks
- Potato
- Tendency to higher infestation but not area-wide
- Recent projects where ZEPP was/is involved:
 - SIMAGRIO (2009-2014)
 - ElatPro (2016-2019)
 - NIKIZ (2020-2023)
 - ValiProg (2019-2024)

Sugar beet site, rooks are searching for wireworms
Monitoring

Field samples

- 5 flowerpots per sample site
- Filled with vermiculite and germinated wheat seeds

e per week er site to

Voche 1) lle 1 (Woche 2)

Semi-field samples

- 2 flowerpots per cage
- Filled with vermiculite and germinated wheat seeds
- Sample

Decision Support System – SIMAGRIO-W

- Input: soil temperature, calculated soil moisture, crop, soil type
- Output:
 - wireworm activity in upper soil layer
 - Threshold value >30% high risk
 - >10% medium risk

Semi-field sample site

Field sample site

- Summer activity, which is not shown by the model Germany, Rhineland-Palatinate, Steinweiler, 2020
- Results in many underestimations during summer

Conclusion

- Start of activity in spring is mostly correct
- Model usually has a spring and fall peak, latest monitoring data sometimes show activity in summer
- Checked the model with different temperature thresholds (soil temperature has a higher impact on model output than soil moisture), just little improvements
- Not enough monitoring data sets to improve model thoroughly
- Not sure if sampling method is good enough, sometimes crops might lure wireworms more than traps
- Wireworm activity season might get longer due to higher temperatures in fall and winter???

{	
{	$\sqrt{2}$

Funded by:

ElatPro &

Gefördert durch

Bundesministerium für Ernährung und Landwirtschaft

aufgrund eines Beschlusses des Deutschen Bundestages Projektträger

114

Country Updates: 1st EWRN Workshop

European Wireworm Research Network

Relevant Wireworm Species in Germany

Jörn Lehmhus

Nationwide Click beetle + Wireworm-Monitoring 2010-2021

Material and Methods

- Pheromone traps (Yatlor traps) used to monitor click beetles of *Agriotes* species
- Bait traps for wireworms at some monitoring sites (bait: wheat grains soaked 24h in water)
- Cooperation with plant protection services of federal states, University of Göttingen and ZEPP, coordination by JKI
- Additionally high numbers of wireworm samples from farmers field sites with a history of wireworm damage were sent to JKI
- Wireworms and click beetles identified to species at JKI

Maps of click beetle / wireworm occurrence on agricultural fields in Germany

Nationwide Click beetle + Wireworm-Monitoring 2010-2021

Agriotes obscurus

Click beetles

agricultural land

Wireworms widespread in

Agriotes lineatus Wireworms widespread in agricultural land

Agriotes sputator Wireworms widespread in agricultural land

Agriotes sordidus

Wireworms on agricultural land only in the Upper Rhine valley and adjacent regions

Agriotes ustulatus Wireworms in agricultural land only in the southern half of Germany Click Beetles Wireworms

Agriotes gallicus No wireworms in agricultural land

Jörn Lehmhus, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104 Braunschweig

Nationwide Click beetle + Wireworm-Monitoring 2010-2021

Hemicrepidius niger Wireworms widespread in agricultural land

Selatosomus aeneus

Wireworms only in agricultural sites with sandy soils, but can reach extreme densities

Click beetles

Jörn Lehmhus, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104 Braunschweig

Agrypnus murinus Wireworms rarely in agricultural land, but high abundance under grassland

Wireworm sampling 2010-2021 Wireworm species at sampling sites

Biological traits: Wireworm feeding choice trials: Food preferences of different species

- Agriotes wireworms take more plant matter than other genera
- Wireworms from other genera prefer animal prey
- No species feeds only on one type of food

Another method, but comparable results: See Traugott et al. (2008) Soil Biology & Biochemistry 40, 342–349

Nationwide Click beetle and Wireworm monitoring 2010-2021: Summary

- Agriotes lineatus, A. obscurus, A. sputator
- Agriotes sordidus (only southwestern Germany), A. ustulatus (only southern Germany)
- *Hemicrepidius niger* (syn. *Athous niger*)
- Selatosomus aeneus (syn. Corymbites aeneus); regionally on light, sandy soils, sometimes in extreme densities
- Locally damaging: Athous haemorrhoidalis, Athous bicolor, Cidnopus aeruginosus
- Rarely damaging, generally in occurring in low densities: *Melanotus* species, further *Athous* species, *Hemicrepidius hirtus, Agrypnus murinus,* further *Cidnopus* species
- At most sites only one or two wireworm species found
- Non Agriotes species generally also less damaging due to preference for animal prey

Outlook

- Return of extremely effective chemical insecticides for wireworm control in Europe unlikely
- "Biological difficulties" with wireworm control by entomopathogenic fungi can be reduced, but are unlikely to be fully overcome, combination of fungi strains might be a way to sort out species specific effects (project **AgriMet**, finished)
- New formulations for encapsulation? New methods: RNAi? (project KoBRA hopefully to start next year)
- Less susceptible potato varieties (project in early planning phase, preliminary results promising)
- Beside insecticidal control, other mitigation measures are necessary (e.g. soil cultivation, no harmful crops in crop rotation)

Only a combination of measures can be successful against this polyphagous, multi-species group of pests

Thank you for your attention!

Many thanks to the very many colleagues from plant protection services, ZEPP, universities, companies, JKI and to all farmers, which have contributed to the **monitoring results**.

Jörn Lehmhus, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11-12, 38104 Braunschweig